# Maintainability Theory

In reliability, one is concerned with designing an item to last as long as possible without failure; in maintainability, the emphasis is on designing an item so that a failure can be corrected as quickly as possible. The combination of high reliability and high maintainability results in high system availability. Maintainability, then, is a measure of the ease and rapidity with which a system or equipment can be restored to operational status following a failure. It is a function of the equipment design and installation, personnel availability in the required skill levels, adequacy of maintenance procedures and test equipment, and the physical environment under which maintenance is performed. As with reliability, maintainability parameters are also probabilistic and are analyzed by the use of continuous and discrete random variables, probabilistic parameters, and statistical distributions. An example of a discrete maintainability parameter is the number of maintenance actions completed in some time t, whereas an example of a continuous maintainability parameter is the time to complete a maintenance action.

# Normal Distribution

There are two principal applications of the normal (or Gaussian) distribution to reliability. One application deals with the analysis of items which exhibit failure due to wear, such as mechanical devices. Frequently the wearout failure distribution is sufficiently close to normal that the use of this distribution for predicting or assessing reliability is valid.

The other application deals with the analysis of manufactured items and their ability to meet specifications. No two parts made to the same specification are exactly alike. The variability of parts leads to a variability in systems composed of those parts. The design must take this part variability into account, otherwise the system may not meet the specification requirement due to the combined effect of part variability. Another aspect of this application is in quality control procedures.

The basis for the use of normal distribution in this application is the central limit theorem which states that the sum of a large number of identically distributed random variables, each with finite mean and variance, is normally distributed. Thus, the variations in value of electronic component parts, for example, due to manufacturing are considered normally distributed.

The failure density function for the normal distribution is
Equ. 1

where
μ = the population mean
σ = the population standard deviation, which is the square root of
the variance.